TPU processor, 16 channels HD video intelligent analysis, 16 channels of full HD video decoding, 10 channels of full HD video encoding
TPU processor, 32 channels HD video intelligent analysis, 32 channels of full HD video decoding, 12 channels of full HD video encoding
RISC-V + ARM intelligent deep learning processor
Based on the RISC-V core, operating at a frequency of 2GHz, the processor features a single SOC with 64 cores and 64MB shared L3 cache.
SRC1-10 is an excellent performance server cluster based on RISC-V arch. It has both computing and storage capabilities, and the full stack of software and hardware is domestically produced.
The RISC-V Fusion Server, supports dual-processor interconnection and enabled intelligent computing acceleration.
SRB1-20 is an excellent performance storage server based on RISC-V arch. It supports CCIX, 128-core concurrent, multi-disk large-capacity secure storage, and the full stack of software and hardware is domestically produced.
SRA1-20 is an excellent performance computing server based on RISC-V arch. It supports CCIX, 128-core concurrent, both software and hardware are open source and controllable.
SRA3-40 is a RISC-V server for high-performance computing, domestic main processor,excellent performance,fusion of intelligent computing, support powerful codec.
SRB3-40 is a high-performance RISC-V storage server with multiple disk slots and large-capacity secure storage.
Intelligent computing server SGM7-40, adapted to mainstream LLM, a single card can run a 70B large language model
SOM1684, BM1684, 16-Channel HD Video Analysis
Core-1684-JD4,BM1684, 16-Channel HD Video Analysis
SBC-6841,BM1684, 16-Channel HD Video Analysis
iCore-1684XQ,BM1684X,32-Channel HD Video Analysis
Core-1684XJD4,BM1684X,32-Channel HD Video Analysis
Shaolin PI SLKY01,BM1684, 16-Channel HD Video Analysis
QY-AIM16T-M,BM1684, 16-Channel HD Video Analysis
QY-AIM16T-M-G,BM1684, 16-Channel HD Video Analysis
QY-AIM16T-W,BM1684, 16-Channel HD Video Analysis
AIV02T,1684*2,Half-Height Half-Length Accelerator Card
AIO-1684JD4,BM1684, 16-Channel HD Video Analysis
AIO-1684XJD4,BM1684X,32-Channel HD Video Analysis
AIO-1684XQ,BM1684X,32-Channel HD Video Analysis
IVP03X,BM1684X,32-Channel HD Video Analysis
IVP03A,Microserver, passive cooling, 12GB RAM
Coeus-3550T,BM1684, 16-Channel HD Video Analysis
EC-1684JD4,BM1684, 16-Channel HD Video Analysis
CSA1-N8S1684,BM1684*8,1U Cluster Server
DZFT-ZDFX,BM1684X,Electronic Seal Analyzer,ARM+DSP architecture
ZNFX-32,BM1684, 16-Channel HD Video Analysis
ZNFX-8,BM1684X,ARM+DSP architecture,Flameproof and Intrinsic Safety Analysis Device
EC-A1684JD4,Microserver with active cooling, 16GB RAM, 32GB eMMC
EC-A1684JD4 FD,BM1684, 16-Channel HD Video Analysis,6GB of RAM, 32GB eMMC
EC-A1684XJD4 FD,BM1684X,32-Channel HD Video Analysis
ECE-S01, BM1684, 16-Channel HD Video Analysis
IOEHM-AIRC01,BM1684,Microserver Active Cooling,16-Channel HD Video Analysis
IOEHM-VCAE01, BM1684, 16-Channel HD Video Analysis
CSA1-N8S1684X,BM1684*8,1U Cluster Server
QY-S1U-16, BM1684, 1U Server
QY-S1U-192, BM1684*12, 1U Cluster Server
QY-S1X-384, BM1684*12, 1U Cluster Server
Deep learning intelligent analysis helps make city management more efficient and precise
Using deep learning video technology to analyze sources of dust generation and dust events, contributing to ecological environmental protection
Using deep learning intelligent analysis to monitor scenarios such as safety production, urban firefighting, and unexpected incidents for emergency regulation.
Using deep learning technology to detect and analyze individuals, vehicles, and security incidents in grassroots governance
Empowering the problems of traffic congestion, driving safety, vehicle violations, and road pollution control
Utilizing domestically developed computational power to support the structured analysis of massive volumes of videos, catering to practical applications in law enforcement
Build a "smart, collaborative, efficient, innovative" gait recognition big data analysis system centered around data
Effectively resolving incidents of objects thrown from height, achieving real-time monitoring of such incidents, pinpointing the location of the thrown object, triggering alerts, and effectively safeguarding the safety of the public from falling objects
Using edge computing architecture to timely and accurately monitor community emergencies and safety hazards
SOPHGO with SOPHON.TEAM ecosystem partners to build a deep learning supervision solution for smart hospitals, enhancing safety management efficiency in hospitals
SOPHGO with SOPHON.TEAM ecosystem partners to build a smart safe campus solution
Using a combination of cloud-edge deep learning methods to address food safety supervision requirements across multiple restaurant establishments, creating a closed-loop supervision system for government and enterprise-level stakeholders
SOPHON's self-developed computing hardware devices, such as SG6/SE5/SE6, equipped with SOPHON.TEAM video analysis algorithms, are used to make industrial safety production become smarter
Combining deep learning, edge computing and other technologies, it has the ability to intelligently identify people, objects, things and their specific behaviors in the refueling area and unloading area. It also automatically detects and captures illegal incidents at gas stations to facilitate effective traceability afterwards and provide data for safety management.
SOPHGO, in collaboration with SOPHON.TEAM and its ecosystem partners, is focusing on three major scene requirements: "Production Safety Supervision," "Comprehensive Park Management," and "Personnel Safety & Behavioral Standard Supervision." Together, they are developing a comprehensive deep learning scenario solution, integrating "algorithm + computing power + platform."
SOPHGO, cooperates with SOPHON.TEAM ecological partners to build a deep learning monitoring solution for safety risks in chemical industry parks
SOPHGO with SOPHON.TEAM ecosystem partners to build a Smart Computing Center solution, establishing a unified management and scheduling cloud-edge collaborative smart computing center
SOPHGO, in collaboration with SOPHON.TEAM ecosystem, have jointly developed a set of hardware leveraging domestically-produced deep learning computational power products. This is based on an AutoML zero-code automated deep learning training platform, enabling rapid and efficient implementation of deep learning engineering solutions
该问题很可能跟散热问题相关,因散热不满足要求处理器温度过高而造成:1看一下是PC还是标准服务器,如果是PC,通常风道和风量不能符合三芯卡的被动 散热要求,建议加装额外的风扇进行散热,或者采用SC5H单处理器主动散热卡; 2标准服务器,先看一下插卡的槽位是否是标准的X16槽位,X8槽位的功率 支持通常最大只有45W,不建议使用; 3看一下服务器的风扇是否直对PCIE卡的进风口,中间有否物理阻挡; 4将服务器的上盖盖好,如果开盖,风扇的 风会散逸,导致散热效果差; 5看一下服务器的所有PCIE槽位都加装了挡片,没有加装挡片的需要加装挡片; 6通过BIOS调整服务器的风扇转速到最大档 位; 7建议将服务器放置于有空调的房间或者标准机房环境进行测试; 8针对三芯卡的散热,如果必须使用散热条件不足的工控机、PC、非GPU型服务器 等,建议由主机厂商增加导风罩为加速卡设立专用风道,便于卡片散热; 9风扇1)为12V供电,2pin风扇,最大电流0.36A,不可调速;风扇2)和3)为 12V供电,4pin风扇,最大电流0.68A,可调速;安装方式:风扇需要安装到卡的入风口处,风扇出风口与卡进风口的距离建议最好不要超过3mm,如果条 件许可的话,建议风扇出风口与卡进风口的地方密封,防止漏风。